"TRADER" SERVICE SHEET

E MPLOYING a compressed internal dipole for F.M. reception, the Ekco A239 is a 5-valve (plus rectifier and cathode ray tuning indicator) A.M./F.M. table receiver designed for operation from A.C. mains of 200-250V, 50-100 c/s. Provision is made for the use of the internal F.M. aerial for A.M. reception. The waveband ranges are A.M., 16-50m, 185-570m, 950-2,150m; F.M., 87.5-100 Mc/s.

Release date and original price: April, 1955; £27 14s 8d. Purchase tax extra.

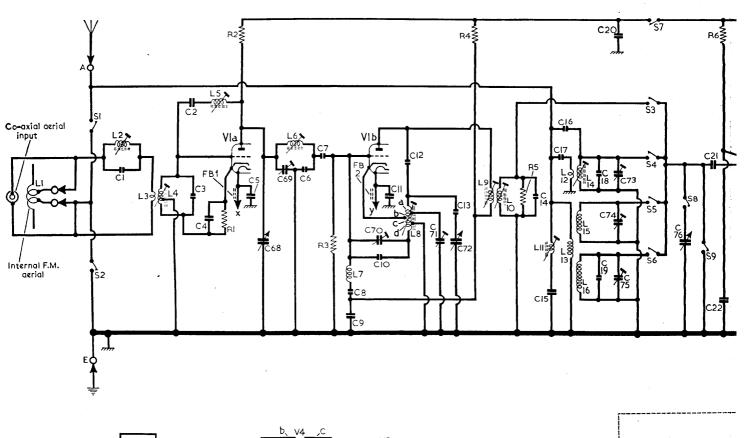
CIRCUIT DESCRIPTION

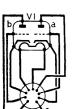
A.M. aerial input via coupling coils L12 (S.W.) and L13 (M.W. and L.W.) to tuning coils L14 (S.W.), L15 (M.W.) and L16 (L.W.). Additional coupling via C16 on S.W. Aerial tuning is by C76 via S8 which closes on the A.M. bands.
Section b of V2 (Mullard ECH81) oper-

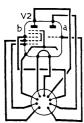
EKCO A239 A.M

4-band (including F.M.) Table M

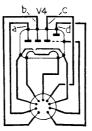
ates as A.M. mixer, and section a as oscillator. Oscillator grid coils L17 (S.W.), L18 (M.W.) and L19 (L.W.) are tuned by C77, switch S11 closing on the A.M. bands. Parallel trimming by C78 (S.W.), C79 (M.W.) and C28, C80 (L.W.); series tracking by C25 (S.W.), C27 (M.W.) and C26 (L.W.). Reaction coupling from oscillator anode via coils L20, L21, L22. Stabilization on S.W. by R10.

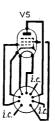

V3 (Mullard EF85) is a variable-mu R.F. pentode operating as intermediate frequency amplifier with tuned transformer couplings C33, L25, L26, C34 and C41, L30, L31, C42.

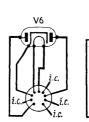

A.M. intermediate frequency 460 kc/s. Diode section c of triple diode triode valve (V4, Mullard EABC80) functions as A.M. signal detector, and the audio frequency component in its rectified output is developed across R19. I.F. filtering by C43, R16 and the capacitance of the leads to chassis. The A.F. signal developed across R19 is passed via \$20, which closes on the A.M. bands, tone control circuit C49, R24, R25, C50, R26, C53 and volume control R28 to grid of triode section d of V4, which operates as A.F. amplifier.

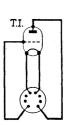

D.C. potential developed across R19 is fed back as bias to V2b and V3 giving automatic gain control on the A.M. bands. A source of standing bias is developed across R39 in the H.T. negative lead and is fed to the A.G.C. line via R20.


Provision is made for the connection of gramophone pickup across the input circuit to the volume control via \$21, which closes in the gram position of the waveband control. Provision is also made, via a second pair of sockets, for feeding radio or gramophone signals to a tape recorder.


Resistance-capacitance coupling by R31, C58 and R32 between V4d and pentode output valve (V5, Mullard EL84). bias for V5 is obtained from the voltage drop across R39. Tone correction by C57 (via \$24 which closes on the A.M. bands







Circuit diagr under "Gen rotary units Supplement to Wireless & Electrical Trader, 17 September 1955

1./F.M. RECEIVER

Model for operation on A.C. mains.

and gram), C61 and by negative feed-back via R29, R34 between T1 secondary winding and V4d grid circuit. Provision is made for the connection of an external low impedance speaker, and an internal speaker muting switch S25 permits the internal speaker to be muted.

H.T. current is supplied by full-wave I.H.C. rectifying valve (V6, Mullard EZ80). H.T. smoothing by R35 and electrolytic capacitors C62, C63.

Operation on F.M.

Co-axial 75 Ω F.M. aerial input via I.F. filter L2, C1 and aerial coupling transformer L3, L4 to R.F. amplifier, section a of V1 (Mullard ECC85). Neutralizing by C2, L5.

Second valve, section **b** of **VI** is a triode operating as **F**.M. oscillator/mixer valve with tuned oscillator anode circuit **L8**, **C13**, **C72**. Reaction coupling is by means of cathode tapping on section **c** of **L8**. Section **d** of **L8**, **C70**, **C10**, **L7**, **C8** and **C9**

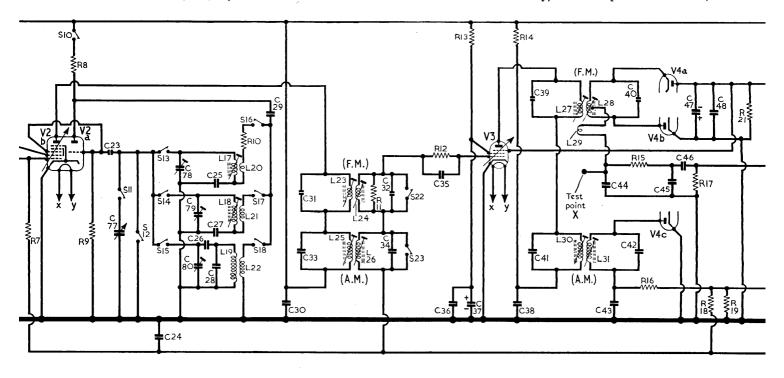
form parts of a bridge neutralizing circuit to prevent coupling between the oscillator and aerial circuits and thus reduce oscillator radiation. Oscillator tuning by C72 and R.F. tuning by C68, which are parts of the tuning gang.

of the tuning gang.

The I.F. signal in V1b output is coupled via I.F. transformer L9, L10 to section b of V2, which functions as first F.M. I.F. amplifier when the receiver is switched to F.M., switch S3 being closed.

F.M. Intermediate frequency 10.7 Mc/s Tuned transformer coupling by C31, L23, L24, C32 and discriminator transformer C39, L27, L28, C40, L29 between V2b, V3 and V4a and b.

Diode sections a and b of V4 operate in a ratio detector discriminator circuit, whose A.F. output is developed across C44 and fed via de-emphasis circuit R15, C45 to the volume control circuit, S19 closing for F.M. operation. Limiting is performed by R12, C35 and by the "flywheel" effect of D.C. reservoir C47.


Appearance of the Ekco A239.

GENERAL NOTES

Switches.—S1, S2 are the screw-type aerial switches which are located on the aerial input panel in location reference A2.

When using separate external A.M. and F.M. aerials, the screw should be inserted in the right-hand side hole (\$2) and screwed in fully clockwise. This connects the screening of the co-axial F.M. input lead to chassis.

When using an external F.M. dipole only, and no separate A.M. aerial, the

gram of the Ekco A239. S1 and S2 are screw-type switches located on the aerial input panel (chassis location reference A2) which are set as instructed neral Notes" for the connection of external A.M. and F.M. aerials. Switches S22, S23, S24 form a separate slide-type unit which is ganged to the on the waveband control. Grid current in R12, C35 in V3 control grid circuit produces a limiting bias on large signals. Negative feed-back from the top of R21 provides a D.C. bias which is applied to the suppressor grid of V3.

EKCO 1216

screw should be inserted in the left-hand side hole (\$1) and tightened. This connects the screening of the F.M. aerial lead to the A.M. aerial input.

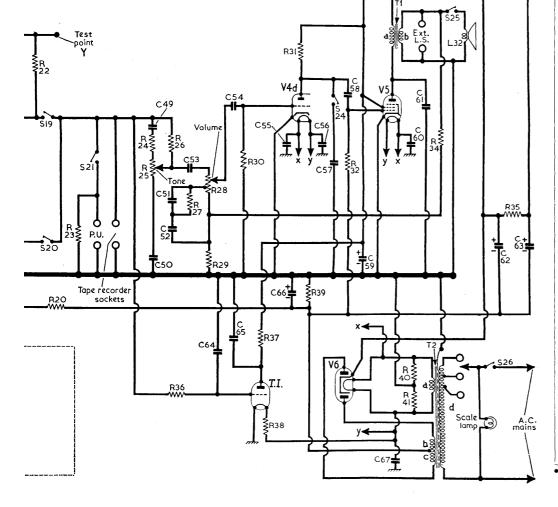
When using the internal F.M. aerial and a separate A.M. aerial, the screw may be left in either hole, but should be left unscrewed by at least three turns.

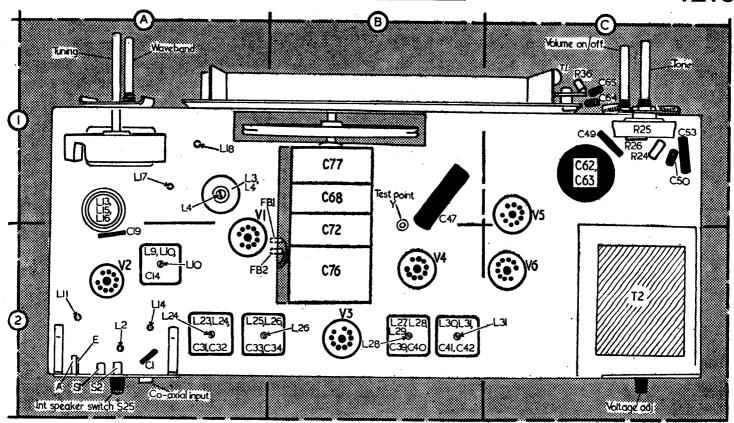
\$3-\$24 are the waveband/gram switches. \$3-\$21 are ganged in three rotary units beneath the chassis. These units are indicated in the underside illustration of the chassis (location reference G3) where the numbered arrows indicate the direction in which they are viewed in the detail diagram of the units overleaf. The associated switch table above the diagrams shows the switch operations in the four control settings, starting from the fully anti-clockwise position of the control. A dash indicates open, and C, closed. 822-824 are also ganged to the waveband switch control but consist of a separate slide type unit in location F4. \$23 closes for F.M. operation, and \$22, \$24 close for A.M. operation.

\$25 is the internal speaker muting switch, mounted between the external speaker sockets in location E4.

Drive Cord Replacement.-About 4ft of

(Continued col. 1 overleaf)


COMPONENTS AND VALUES


			Loca- tions
R1	V1a G.B	220Ω	F3
$\tilde{R}\tilde{2}$	Via H.T. feed	27kΩ	E3
R3	V1b C.G	47kΩ	F4
R4	V1b C.G V1b H.T. feed 1st F.M. I.F.T.	56kΩ	G4
R5	1st F.M. I.F.T.	Ottaa	~-
		56kΩ	G4
R6	V2b S.G. feed	33kΩ	G4
R7		470kΩ	G4
R8	V2b C.G V2a H.T. feed	33kΩ	G3
$\tilde{\mathbf{R}}$ 9	V2a C.G	47kΩ	G4
R10	S.W. osc. stabilizer	100Ω	G3
Rii	2nd F.M. I.F.T.	10025	""
	shunt	56kΩ	F4
R12	V3 grid leak	470kΩ	F4
R13	V3 S G feed	68kΩ	F4
R14	V3 S.G. feed V3 H.T. feed	2·2kΩ	E4
R15	Part de-emphasis	47kΩ	E4
R16	I.F. stopper	47kΩ	E4
R17	Discriminator bal-		
	ancing	3.3MΩ	E4
R18	A.G.C. decoupling	$2.2M\Omega$	E4
R19	A.M. diode load	220kΩ	E4
R20	G.B. decoupling	6·8MΩ	E4
R21	D.C. load	27kΩ	E3
R22	D.C. load Discriminator bal-		
	ancing	1ΜΩ	E4
R23	P.U. shunt	1MΩ	E4
R24	Part tone control	220kΩ	C1
R25	Tone control	1MΩ	C1
R26	Part tone control	220kΩ	C1
R27	Tone corrector	33kΩ	D3
R28	Volume control	IMΩ	D3
R29	Neg. feed-back	10Ω	D3
R30	V4d C.G	$10M\Omega$	E4
	(Continued next c		

R33

	RESISTORS (Continued)	Values	Locations
R31	V4d anode load	220kΩ	E3
R32	V5 C.G	$680 k\Omega$	E4
R33	H.T. feed	4·7kΩ	D3
R34	Neg. feed-back	470Ω	E3
R35	H.T. smoothing	820Ω	D3
R36	T.I. decoupling	$3.3M\Omega$	C1
R37	T.I. H.T. feed	$1M\Omega$	D3
R38	T.I. heater ballast	82Ω	D3
R39	Common G.B	100Ω	D3
R40	} Heater tapping {	27Ω	D4
R41	Treater tapping }	33Ω	D4

	CAPACITORS	Values	Loca- tions
C1	F.M. I.F. filter tun.	22pF	A2
C2	Via neutralizing	$0.001 \mu F$	F3
C3 C4	F.M. aerial tuning	6pF 0·01µF	F3 F3
Č5	Heater by-pass	0.01 aF	F3
C6	Heater by-pass F.M. R.F. trim V1b C.G	17pF 33pF	F4
C7 C8		33pF 33pF	F4 F4
C9	F.M. oscillator neutralizing	470pF	F4
C10) · · · · · · · · · · · · · · · · ·	6·8pF	F4 F4
C11 C12	Heater by-pass F.M. osc. coup	$0.01 \mu F$ $22 pF$	F4
C13§	F.M. osc. coup F.M. osc. tracker 1st F.M. I.F.T. tun.	20pF	F4 A2
C14 C15	A.M. I.F. filter tun.	22pF 100pF	G4
C16	A.M. aerial coup {	6 pF	G4
C17 C18	S.W. aerial trim	30pF 22pF	G4 G4
C19	L.W. aerial trim	68pF	A2
C20	L.W. aerial trim H.T. by-pass V2b C.G	$0.01 \mu F$	G3
C21 C22	V2b S.G. decoupling	100pF 0·01µF	G4 G4
C23	V2a osc. C.G	68pF	G4
C24 C25	A.G.C. decoupling S.W. osc. tracker	0·05µF 0·01µF	G4 G3
C26	L.W. osc. tracker M.W. osc. tracker	400pF	G3
C27	M.W. osc. tracker	540pF	F3 F3
C28 C29	L.W. osc. trimmer A.M. osc. coupling	280pF 0.001µF	G3
C30	H.T. by-pass	$0.01 \mu F$	F4
C31 C32	} 2nd F.M. I.F.T. { tuning {	22pF 17pF	A2 A2
C33	1st A.M. I.F.T.	100pF	A2
C34	f tuning }	100pF	A2
C35 C36	V3 C.G	100pF 0·01μF	F4 F4
C37*	V8 S.G. decoupling {	$1\mu F$	F4
C38 C39	H.T. decoupling 3rd F.M. I.F.T.	0·05μF 22pF	E4 B2
C40	f tuning }	30pF	B2
C41) 2nd A.M. I.F.T. (350pF	B2 B2
C42 C43	A.M. I.F. by-pass A.F. load	350pF 100pF	E4
C44	A.F. load	300pF	E4
C45 C46	De-emphasis A.F. coupling	500pF 0-02μF	E4 E4
C47*) Discriminator ($8\mu F$	B1
C48 C49	reservoir }	0·01μF 22 0 pF	C1
C50	Parts tone control {	0.001μ F	C1
C51	Tone correctors {	$0.001 \mu F$	D3
C52 C53	K	0·02μF 0·01μF	D3
C54	A.F. coupling {	0.01μ F	E4
C55 C56	Heater by-passes {	0·01μF 0·01μF	E4 E4
C57	Tone corrector	0.002µF	E4
C58 C59*	A.F. coupling H.T. smoothing	$0.01 \mu F$	E3 D4
C60	H.T. smoothing Heater by-pass	8μF 0·001μF	E3
C61	Tone corrector	$0.005 \mu F$	E3
C62 C63	H.T. smoothing {	50μF 50μF	C1 C1
C64	K - 2	50μF 0·02μF	CI
C65 C66*	T.I. decoupling {	0·01μF 100μF	Ci E4
C67	G.B. decoupling Heater by-pass	0·001μF	D4
C68†	Heater by-pass F.M. R.F. tuning F.M. R.F. trim	•	B1
C69‡	F.M. R.F. trim	30pF 8pF	F3 F4
C701 C711 C72	F.M. osc. neut F.M. osc. trim F.M. osc. tuning	opr 8pF	F4
C72†	F.M. osc. tuning		B2 G4
C73‡	S.w. aeriai triin	40pF 40pF	G4
C751 C761	M.W. aerial trim L.W. aerial trim	40pF	G4
C76†	A.M. aerial tuning A.M. osc. tuning	=	B2 B1
C781 C791	S.W. osc. trim M.W. osc. trim	15pF	G3 G3
C79‡	M.W. osc. trim L.W. osc. trim	40pF 40pF	G3 G3
-00°	LI. W. OBC. UTIM	#oħr.	us
Tile of	rolytic + Veriable		Dec. oat

Plan illustration of the chassis showing the two F.M. sections of the gang C68, C72 in location references B1, B2.

OTE	ER COMPONENTS	Approx. Values (ohms)	Loca- tions
L1	F.M. int. dipole		
L2	F.M. I.F. filter		A2
L3 L4	F.M. aerial coils {	-	A1
L4 L5	V1a neutralizing	_	A1
L6	F.M. R.F. tuning		F3
Ĺž	F.M. osc. neut.	_	F3 F4
Ī.š	F.M. osc. coil		F4
L9	1st F.M. (Pri		A2
L10	J.F.T. \Sec		A2
Γij	A.M. I.F. filter	12.0	G4
L12	A.M. aerial coupling {	2.5	G4
L13 L14	{ coils }	50.0	A1
L15	A.M. aerial tuning	2.5	G4
Lis	coils	30.0	A1 A1
L17	ί , ,, , , , , , , , , , , , , , , , ,		G3
L18	A.M. oscillator	3.0	Ğ3
L19	funing coils	6.0	G3
L20	A.M. oscillator re-		G3
L21 L22	action coils	2.0	G3
L23	2nd F.M. (Pri	3.0	G3
L24	I.F.T. \Sec		A2 A2
$\overline{L25}$	1st A.M. Pri	6.0	A2
L26	J I.F.T. \ Sec	6.0	A2
L27	F.M. dis- (Pri.		B 2
L28	criminator { Sec.		B2
L29 L30	transformer Tert.	- -	B2
L30 L31	\ \begin{cases} 2nd A.M. \ \ \ Pri \ \ \ Sec \end{cases}	6.0	B2
L32	Speech coil	6·0 2·5	B2
		900.0	E3
T1	O.F. dans. {b	_	150
	(a		
T2	Mains trans. \ b c	320·0 320·0	C2
	d, total	34.0	
S1, S2 S3-	Aerial switches		A2
S21 S22-	Waveband switches		G3
S24	F.M./A.M. switches		F4
S25	Speaker switch		E4
S26	Mains sw., g'd R28		D3

General Notes-Continued

good quality flax fishing line, plaited and waxed, together with about 3½ft of 7-strand steel wire, are required for a new drive cord. The drive wire should be

made up with a soldered loop at each end to measure 34 inches overall. One end of the drive cord should be tied to it and, starting with the gang at maximum capacitance, should be run as shown in the sketch of the drive cord system at the foot of columns 4 and 5.

Scale Lamp.—This is a 250V, 15W pygmy lamp with a bayonet cap base.

Modifications.—Differences between the sample receiver on which this Service Sheet was prepared and earlier models are as follows.

A 27Ω resistor was connected in series with the lead from V1b grid and C70, C10, L7. R4 was 4.7kΩ. R5 and R11 were omitted. C16, C20, C36, C56, C60 and C67 were omitted.

Valve Replacements.—V2 and V3 can generally be replaced without the need for realignment of the associated tuning circuits. However, realignment of the R.F. and oscillator circuits may be necessary if V1 is replaced, particularly if the receiver is operated in an area of low signal strength.

signal strength.

F.M. I.F. Transformer Replacement.—
If the first or second F.M. I.F. transformers L9, L10 and L23, L24 are replaced and if no alignment equipment is available, they can be aligned on an F.M. transmission by adjusting their cores for maximum sound output. The receiver should then be tuned through the receiver signal and a check made by means of the tuning indicator to see that the response is reasonably symmetrical on both sides of the tuning point.

If the discriminator transformer is replaced this can also be set up on a transmission by carefully tuning the primary for maximum sound output as above, and then carefully tuning the secondary to the strongest of the three tuning points found on screwing the core through its range.

VALVE ANALYSIS

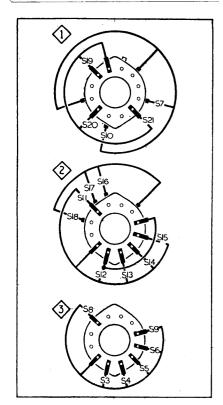
Valve voltages and currents given in the table below are those measured on our sample receiver when it was operating from A.C. mains of 230V. The receiver, except where otherwise indicated, was tuned to the high wavelength end of M.W., and there was no signal input.

Voltages were measured with an Avo Electronic Test Meter and as this instrument has a high internal resistance, allowance should be made for the current drawn by other types of meter. Chassis was the negative connection in every case.

Valve	Anode		Screen		Cath.	
Valve	v	mA	v	mA	v	
V1 ECCS5* {a b	117 62	4·9 3·7		=	1.2	
V2 ECH81 {a b	105 275	7·7 7·6	88	4.4		
V3 EF85	243	12.0	92	2.3		
$V4$ EABC80 ${a-c \atop d}$	65	0.8	_		_	
V5 EL84	257	37.0	242	4.2		
V6 EZ80	282†	_	-		295‡	
Т.І. DM70	43				_	

* Switched to F.M. † A.C. reading, each anode. Cathode current 76.5 mA.

CIRCUIT ALIGNMENT


Remove chassis from cabinet and support it on its mains transformer end on the bench. The tuning scale should also be removed from the cabinet after releasing its seven securing clips, and should be placed in position over the control spindles.

Equipment Required.—An A.M. signal generator covering the range of 140 kc/s to 18 Mc/s and an F.M. signal generator covering the F.M. intermediate frequency of 10.7 Mc/s and the frequency range of

(Continued col. 5)

Switch Table

Switches	F.M.	s.w.	M.W.	L.W.	Gram
83	С				
84	<u> </u>	С		-	
S5		<u> </u>	С	_	
86	I —			С	_
87	C				<u> </u>
88		С	C	C	
89					С
53 54 55 56 57 58 59 510 511 512 513 514 516 516 517	l —	C	С	C	_
S11	l	C	C	С	
S12	C	-		_	0
813	l	C			
814	l	l —	C		
815	! —			С	
816	-	C			_
817		—	С		
818			-	C	_
819	C				_
S19 S20	C	0 0 00 0 0 0			0
S21		_			C

Diagrams of the waveband switch units, viewed from the rear of an inverted chassis as indicated in the under-chassis view.

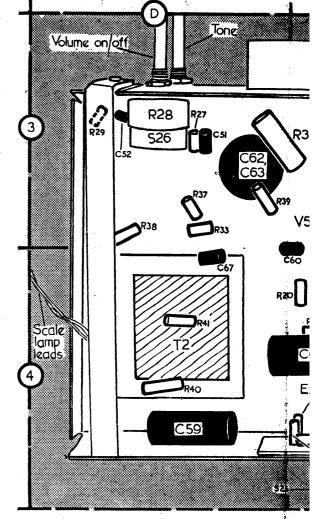
Circuit Alignment—continued

86-100 Mc/s, with a deviation of at least ±100 kc/s. Alternatively an A.M. signal generator may be used for both A.M. and F.M. alignment, and separate instructions for the F.M. adjustments using an A.M. generator are given under "F.M. Alignment using A.M. Generator." A Multirange voltmeter for use as output meter; a 20,000 ohms-per-volt valve voltmeter for use in setting up the oscillator meter for use in setting up the oscillator neutralizing circuit; a $47k\Omega$ damping resistor and a 150pF capacitor.

F.M. Alignment using F.M. Generator

I.F. Stages.—Switch receiver to F.M. and turn gang to maximum capacitance. Connect multi-range meter on A.C. voltage range across T1 primary winding. Connect output of F.M. signal generator, via a 150pF capacitor in the live lead, across L24. Feed in a 10.7Me/s signal divised by the content of the content nal deviated by ±25 kc/s and adjust the cores of L27 (location reference E4) and L28 (B2) for maximum output.

Connect output of A.M. signal generator in place of F.M. generator leads across L24. Feed in a 30% modulated 10.7 Mc/s signal and readjust the core of L28 (B2) for minimum output. Reconnect F.M. signal generator in place of A.M. generator, and feeding in a 10.7 Mc/s signal deviated by ±100 kc/s, readjust the core of L27 (E4) for maximum output. Then finally readjust the core of L28 (B2) for minimum distortion.


Set F.M. generator deviation to ±5 kc/s and check that the output at 10.6 Mc/s and 10.8 Mc/s is no more than 6db (2:1) down on the output at 10.7 Mc/s.

Transfer F.M. generator leads to L10. Feed in a 10.7 Mc/s signal, deviated by ±25 kc/s and adjust the cores of L23 (F4) and L24 (A2) for max. output. Repeat the bandwidth check given in the previous paragraph, readjusting the cores of L23 and L24 if necessary to obtain a symmetrical response. Transfer signal generator leads to L3 and adjust the cores of L9 (G4) and L10 (A2) for maximum output. Check bandwidth as before.

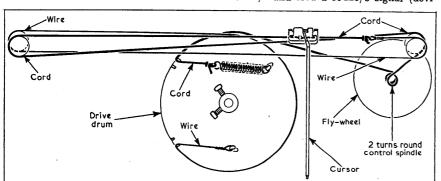
Finally, transfer F.M. generator leads to F.M. aerial socket and adjust the core of L2 (G4) for minimum output.

R.F. and Oscillator Stages.—Check that with the gang at maximum capacitance, the cursor coincides with the high wavelength ends of the tuning scales.
With receiver switched to F.M., tune to

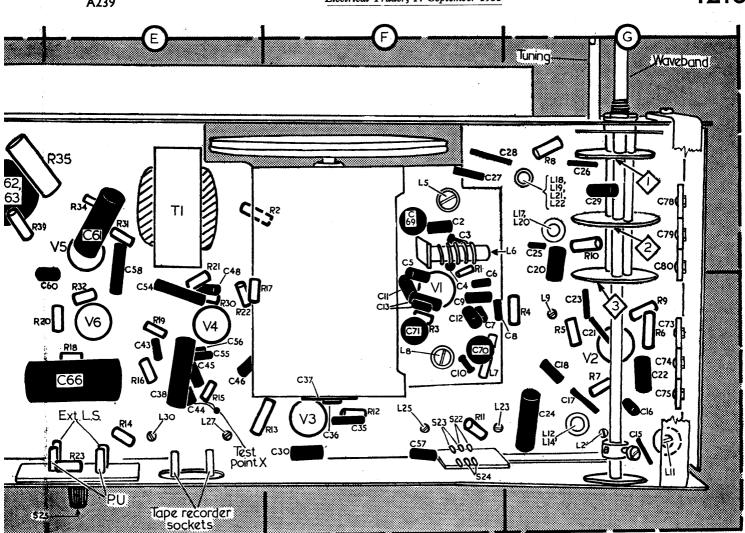
90 Mc/s and feed a 90 Mc/s signal (devi-

Underside illustration of chassis. S22, S23, S24 (k

ated by $\pm 25 \, kc/s$) to the F.M. aerial socket. Adjust L8 (F4) for maximum output, selecting the first peak obtained on screwing the core out from its farthest-in position. As a check that the correct peak has been chosen, the receiver should be tuned to 111.4 Mc/s where the image signal should be received.


Tune receiver to 98 Mc/s, and feeding in a 98 Mc/s signal, adjust C71 (F4) for maximum output, selecting the first peak obtained from the minimum capacitance setting. Check that the image signal is received at 119.4 Mc/s.

Retune receiver to 90 Mc/s, feed in a 90 Mc/s signal and adjust the core of L6 (F3) for maximum output, rocking the gang slightly if "pulling" is experienced.


Retune receiver to 98 Mc/s, feed in a 98 Mc/s signal and adjust C69 (F3) for maximum output, rocking the gang slightly if "pulling" is experienced.

Tune receiver to 94 Mc/s, feed in a 94 Mc/s signal and adjust the core of L4 (A1) for maximum output.

Disconnect R2 from the H.T. line and connect it to the junction of R20, R39.

Sketch of tuning drive system. Lengths of cord and wire are given in "General Notes".

, S23, S24 (location reference F4) are A.M./F.M. switches.

Contacts of waveband switch units 1, 2, 3 are identified in the diagrams in col. 4.

Adjust the core of L5 (F3) for minimum output. Reconnect R2 to the H.T. line.

Connect valve voltmeter on its lowest range across the F.M. aerial socket and adjust G70 (F4) for minimum oscillator voltage measured on meter. Repeat the adjustments to L8, C71, L6 and C69.

F.M. Alignment using A.M. Generator

1.F. Stages.—Switch receiver to F.M. and turn gang to maximum capacitance. Connect two matched 100kΩ resistors across C47 (between test point Y, location reference B1, and chassis). Connect valve voltmeter between junction C44, R15 (test point X, location reference E4) and the junction of the two 100kΩ resistors. Connect multi-range meter across C47 and switch to low-voltage D.C. range.

Connect output of A.M. signal genera-

Connect output of A.M. signal generator, via a 150pF capacitor in the live lead, across L24. Feed in a 10.7 Mc/s unmodulated signal and adjust the cores of L27 (E4) and L28 (B2) for maximum output on multi-range meter. Readjust L28 for minimum response on valve voltmeter. Disconnect resistors and valve voltmeter.

All Preceding Stages.—Adjust the cores and other pre-set trimmers as described under "F.M. Alignment using F.M. Generator," feeding in an unmodu-

lated 10.7 Mc/s signal and using the multi-range meter connected across C47.

A.M. Alignment

1.F. Stages.—Switch receiver to M.W. and turn gang to maximum capacitance. Connect output of signal generator across C76 (location reference B2). Connect $47k\Omega$ damping resistor across L30, feed in a 460 kc/s (652.1m) signal and adjust the core of L31 (B2) for maximum output.

Remove damping resistor from L30 and connect it across L26. Adjust the core of L30 (E4) for maximum output. Transfer damping resistor to L30, and adjust the core of L26 (A2) for maximum output. Transfer damping resistor to L26, and adjust the core of L25 (F4) for maximum output. If the cores are readjusted, repeat the complete sequence of operations.

1.F. Filter.—Transfer signal generator leads to A.M. aerial and earth sockets, feed in a 460 kc/s signal and adjust the core of L11 (A2) for minimum output.

R.F. and Oscillator Stages.—Check that with the gang at maximum capacitance, the cursor coincides with the high wavelength ends of the tuning scales.

length ends of the tuning scales.

L.W.—Switch receiver to L.W. and tune to 1,000m. Feed in a 1,000m

(300 kc/s) signal and adjust **C80** (G3) and **C75** (G4) for maximum output. Repeat these adjustments until no further improvement results.

M.W.—Switch receiver to M.W. and tune to 250m. Feed in a 250m (1,200 kc/s) signal and adjust C79 (G3) for maximum output. Tune receiver to 500m, feed in a 500m (600 kc/s) signal and adjust the core of L18 (A1) for maximum output.

Tune receiver to 231m, feed in a 231m (1,300 kc/s) signal and adjust C74 (G4) for maximum output. Repeat these adjustments until calibration is correct.

S.W.—Switch receiver to S.W. and tune to 42.87m. Feed in a 42.87m (7 Mc/s) signal and adjust L17 (A1) for maximum output, choosing the first peak on screwing the core in from its farthest-out position.

Tune receiver to 18.75m, feed in an 18.75m (16 Mc/s) signal and adjust C78 (G3) to the first peak from the minimum experience setting of the trimmer.

capacitance setting of the trimmer.

Tune receiver to 42.87m, feed in a 42.87m (7 Mc/s) signal and adjust L14 (A2) for maximum output. Tune receiver to 18.75m, feed in an 18.75m (16 Mc/s) signal and adjust C73 (G4) for maximum output.